
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Life Sciences 291 (2022) 120111

Available online 31 October 2021
0024-3205/© 2021 Elsevier Inc. All rights reserved.

Review article 

Nrf2/Keap1/ARE signaling: Towards specific regulation 

Alexey V. Ulasov a,*, Andrey A. Rosenkranz a,b, Georgii P. Georgiev a, Alexander S. Sobolev a,b 

a Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia 
b Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia   

A R T I C L E  I N F O   

Keywords: 
Oxidative stress 
Nrf2 
Keap1 
ROS 
Influenza virus 
SARS-CoV-2 

A B S T R A C T   

The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative 
stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, 
diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under 
the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is re-
generated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates 
the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful 
cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress 
including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is 
accomplished mainly through the inactivation of the Keap1 “guardian” function. Two approaches are now 
developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct inter-
ruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 
electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. 
Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the 
therapeutic window.   

1. Introduction 

Oxidative stress is one of the key factors affecting our cells due to the 
reactive oxygen species (ROS) and free radicals [1], constantly produced 
from internal sources (cell metabolism) as well as external exposure (UV 
light, ionizing radiation, ozone, toxicants such as cigarette smoke, heavy 
metals, insecticides and pesticides, viruses and bacteria, altering cellular 
balance). The mitochondria are the main source of the endogenous ROS, 
generating them during cellular respiration. Some cytosolic enzymes 
such as cytochrome P450, lipoxygenases, and NADPH oxidase also 
generate ROS as well as peroxisomal oxidases [2]. ROS participates in 
normal cellular and organismal processes, acting as redox signaling 
molecules [3,4] with the ability to tight control of subcellular localiza-
tion and rapid changes in oxidants levels. When ROS generation exceeds 
their catabolism, oxidation of the intracellular proteins, lipids, DNA 
increases, leads to the oxidative damage of their functions, formation of 
toxic molecules, and possible transformation of the normal cellular 
processes to the pathological ones [5]. Besides ROS our cells are exposed 
to other toxicants such as environmental pollutants, bacterial and viral 
toxins. To resist to the wide spectrum of oxidative and chemical 

omnipresent stresses our cells have developed an adaptive defense sys-
tem, consisting of dozens cytoprotective genes, which products provide 
adaptation to different stressors. These genes are components of 
different systems, such as xenobiotic detoxication, glutathione- and 
thioredoxin-based antioxidant metabolic pathways, drug-resistance 
protein transporters, proteasomal degradation, autophagy, iron and 
lipid metabolism, NADPH regeneration, required as a cofactor for some 
of above mentioned systems [6]. 

The majority of these cytoprotective genes contains antioxidant- 
responsive element, ARE, cis-acting sequence in the 5′-upstream regu-
latory region, through which modulation of transcription occurs via 
binding of basic domain and leucine zipper (bZIP) transcription factors 
(TFs), the most prominent of which is Nrf2 (NF-E2 p45-related factor 2) 
[6]. The existence of the common cellular system, responsible for che-
moprotection had been predicted a decade before such system was 
discovered. In the 1988 Talalay et al. paper [7] it had been proposed that 
the cell ability to express set of chemoprotective enzymes can be induced 
by a variety of different small molecules but with a similar chemical 
property. This implies existence of a cellular system, regulating che-
moprotection, and that the system should have key element(s), which 
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could be activated during stress. In 1994 Nrf2 was isolated [8], now 
referred to as a master regulator of cellular antioxidant defense [9]. A 
four years later the cellular protein Keap1 (Kelch-like ECH-associated 
protein 1) was identified as a suppressor of Nrf2 activity [10], and 
subsequently have been demonstrated as a sensor [11], which thiol 
group of cysteine residues react with inducers molecules. Conventional 
wisdom suggests that Keap1 is a redox/electrophile sensitive negative 
regulator of Nrf2/ARE signaling pathway, which, in turn, mediates the 
expression of hundred genes, involved in the cytoprotective systems. 
After the Nrf2/ARE signaling discovery the field has quickly exploded 
and still is an area of ongoing research and focus of interest of numerous 
articles. As several thorough reviews can be found in [12–15] we only 
mention some key points and we focus primarily on the recent data 
about the role of Nrf2 in emerging viral diseases and ways to modulate 
Nrf2 activity more specific through competitive regulation. 

2. Nrf2 

From the evolutionary standpoint the Nrf2 system is a defense 
mechanism against oxidants and xenobiotics, widely conserved across a 
broad spectrum of organisms [16], with first Nrf2 orthologues appeared, 
according to some estimates, in fungi more than one billion years ago 
[17]. The biology of Nrf2:Keap1 interaction is relatively well elucidated. 
Nrf2 is a 66 kDa protein, consisting of 7 conserved functional regions 
(Fig. 1a), named Nrf2-ECH homology domains (Neh) [6,18,19]. Neh1 
domain contains a basic leucine zipper motif, and is responsible for 
heterodimerization with its transcriptional partner Maf TF and for DNA 
binding. Neh2 domain interacts with Keap1 through two motifs: high 
affinity (Kd ~ 5 nM) ETGE and low affinity (Kd ~ 1 μM) DLG [20–22]. 
Both motifs are indispensable for Keap1 regulation [23]. A recent study 
has shown that Keap1 uses several mechanisms to activate Nrf2 in 
response to a wide range of environmental stresses [24]. A model for the 
molecular mechanisms leading to Nrf2 activation is the Hinge-Latch 
model, where the DLGex-binding motif of Nrf2 dissociates from Keap1 
as a latch, while the ETGE motif remains attached to Keap1 as a hinge. 
The DLG latch dissociation is triggered by inhibitors of Keap1-Nrf2 
interaction and occurs during stress-inducible protein p62-mediated 
Nrf2 activation, but not by electrophilic Nrf2 inducers [24]. Also Neh2 
domain contains lysine residues, which are substrates for ubiquitination 
and participate in Keap1-dependent Nrf2 proteasomal degradation [25]. 
Neh3, Neh4 and Neh5 are transactivator domains, interacting with 
intracellular co-activator molecules. Deletion of Neh3 abolishes the Nrf2 
ability to activate ARE-mediated gene expression, keeping intact 
dimerization and DNA-binding capability as well as subcellular locali-
zation [26]. Neh4 and Neh5 act synergistically and cooperatively recruit 
co-activator molecule CBP [27], which acetylates Nrf2, hence enhancing 

it activity [28]. Neh6 allows Keap1-independent regulation, triggered by 
GSK3β phosphorylation of DSGIS and DSAPGS motifs, creating a phos-
phodegron for Nrf2 ubiquitination by Cul1-β-TrCP complex [29]. Neh7 
domain also regulates Nrf2 activity, binding retinoic acid receptor α, a 
nuclear receptor, which represses Nrf2 activity [30]. 

Under unstressed conditions, Nrf2 is localized in the cytoplasm 
(Fig. 2), and fraction of cytoplasmic Nrf2 is tethered to the outer mito-
chondrial membrane through mitochondrial serine/threonine-protein 
phosphatase PGAM5, forming a ternary complex with the Keap1 and 
the Nrf2 [33]. Nrf2 nuclear localization is regulated through the import/ 
export balance. Nrf2 contains three nuclear localization sequences (in 
the Neh1, Neh2, and Neh3 domains [34]) and two nuclear export se-
quences (NES) (NESzip [35] in the bZIP region of Neh1 domain and 
NESTA [36] in the Neh5 transactivation domain). NESTA is a redox- 
sensitive signal: oxidation of cysteine 183 in its structure promotes 
Nrf2 nuclear accumulation, possibly, via preventing access of the nu-
clear exportin CRM1 to the NESTA [36]. Nuclear retention of Nrf2 is 
enhanced after heterodimerization with Maf in the nucleus perhaps due 
to the NESzip masking [37]. Under unstressed condition Bach1 TF 
competes with Nrf2 for binding Maf, repressing transcription of ARE- 
regulated genes [38,39], wherein Nrf2 activates Bach1 expression 
[40]. Increase of intracellular heme level inhibits Bach1 negative 
regulation of Nrf2, allowing Nrf2 to activate target genes, including 
heme oxygenase-1 (HO-1), the key enzymes, regulating heme catabo-
lism [38]. Another Nrf2 negative regulator is c-Myc, competing for ARE 
and increasing Nrf2 degradation [41]. Additional cellular mechanisms 
for Nrf2 control, including epigenetics, transcriptional, post- 
transcriptional regulations are reviewed in detail elsewhere 
[42–45,18,6]. 

3. Keap1 

Human Keap1 is 69 kDa protein containing 27 cysteine residues, 
most of them are accessible for redox oxidation or electrophiles conju-
gation. The Keap1 cysteine thiols reactivity depends on concentration 
and varies for different inducers (so-called “cysteine code”), providing a 
basis for fine-tuning and differentiating response pattern for different 
stressors [46,47]. In addition to the N- and C-end domains, three major 
functional Keap1 domains (Fig. 1b) have been described: BTB, homo-
dimerization domain; IVR domain with most reactive cysteines, acting 
as sensors; Kelch repeat domain, binding Nrf2. BTB and IVR also 
participate in binding Cul3 ubiquitin ligase, carrying out Nrf2 ubiq-
uitination. To date, the mechanism of Keap1-dependent regulation is 
considered as following. Two Keap1 molecules bind high affinity ETGE 
and low affinity DLG sites of Nrf2, resulting in a stoichiometric ratio 2:1. 

Fig. 1. Protein domains structure of Nrf2 (A) and Keap1 (B). Nrf2 and Keap1 
domain boundaries are given according to papers by Canning et al., 2015 [31] 
and Jung et al., 2018 [32]. Fig. 2. The Nrf2 signaling pathway.  
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After homodimerization Keap1 bridges Nrf2 to the Cul3/RING-box 
protein complex, which ubiquitinates Nrf2 lysine residues, located in 
the Neh2 domain. The ubiquitinated Nrf2 is extracted from the complex 
with Keap1-Cul3 by the p97 protein [48] and targeted for proteasomal 
degradation whereas the Keap1 is regenerated [49]. Thus, under basal 
unstressed conditions the Keap1 binds Nrf2, sequestering it from 
translocation to the nucleus. During stress, oxidants or electrophilic 
molecules modify Keap1 cysteine residues, which lead to the confor-
mational changes and to the switching off Keap1-dependent negative 
Nrf2 regulation [50,51]. The concentration of Keap1 in the nucleus is 
several times lower than in the cytoplasm and this results in a low level 
of Nrf2 basal activity [52]. Nuclear Keap1 import is Nrf2-independent 
and is mediated through importin α7 [53]. Similar to Nrf2, Keap1 con-
tains NES, ensuring mechanism to terminate Nrf2 activity through its 
export to cytoplasm after recovery of cellular redox homeostasis 
[54,55]. Another probable mechanism to turn off Nrf2 activation is the 
Nrf2 ubiquitination and degradation inside the nucleus via nuclear 
translocation of Keap1/Cul3 complex [56,57]. Additional mechanism of 
nuclear Nrf2 repression was discovered during investigation of 
Hutchinson-Gilford progeria syndrome (HGPS), premature aging syn-
drome, when Nrf2 is switched off due to the trapping to the nuclear 
periphery by mutated lamin A (progerin) protein, resulting in chronic 
oxidative stress and aging effects [58]. The reactivation of the Nrf2 
pathway in HGPS patient cells reversed oxidative stress and cellular 
HGPS effects [59,60]. During aging Nrf2 activity declines, whereas level 
of its inhibitors increases [61,62]. Lewis et al. found a positive corre-
lation between constitutive Nrf2 signaling activity and maximum life-
span potential, studying long-lived naked mole rats and other rodent 
species [63]. Remarkably, the elevated Nrf2 activity significantly 
correlated with level of Nrf2 negative regulators Keap1 and β-TrCP, but 
not with the expression of the Nrf2 itself. Taken together, these data 
suggest that if free radical theory of aging holds, Nrf2 could be a key 
regulator of this process. 

The absolute quantity of Nrf2, Keap1, and Cul3 were determined in 
the paper of Iso et al. using quantitative immunoblot analyses of five 
murine cell lines in basal and induced states [52]. Surprisingly, the Nrf2 
and Keap1 tend to be very abundant cellular proteins with the total 
level, ranging in a basal state from 50,000 to 300,000 Keap1 molecules 
per cell and from 49,000 to 190,000 Nrf2 molecules per cell [52] 
exceeding the amount of many other TFs [64]. In the Raw264.7 cells 
upon electrophilic stimuli the Keap1 and Cul3 level does not change, 
whereas the Nrf2 level increased fourfold in the cytoplasm/organelles 
and tenfold in the nucleus, reaching concentrations of 0.6 μM and 2.7 
μM, respectively [52]. Tight control of the Nrf2 via different mecha-
nisms results in a rapid turnover of the Nrf2: in a basal state the Nrf2 
half-life in different cells is 7–18 min [65–68] and different inducers 
prolong its half-life by several times [65,68]. The Keap1 half-live is 12.7 
h and, unlike Nrf2, it is shortened after reacting with stressors [69]. 
Besides Nrf2, Keap1 also regulates Bcl-2 [70] and IKKβ [71], promoting 
theirs degradation. 

Keap1 have been reported to interact with more than a dozen cellular 
proteins with a motif, resembling the Nrf2 ETGE [72,73]. Furthermore, 
recent databases analysis identified 40 possible Keap1-interacting 
cellular proteins with a similar motif [74]. These interactions are 
considered as a non-canonical Nrf2 activation mechanism, since other 
cellular partners compete with Nrf2 for the Keap1 and increase in their 
concentration could activate the Nrf2 via direct displacement it from the 
complex with the Keap1 [75,72]. The IKKβ, intracellular activator of NF- 
κB, contains both ETGE and DLG motifs, resembling Nrf2, and the ETGE 
is essential for Keap1 interaction [71]. The p62, stress-inducible protein, 
captures the Keap1 with 349DPSTGEL355 motif and is the well-studied 
example of such cellular proteins, disrupting Nrf2:Keap1 interactions. 
The p62, positively regulated by Nrf2, participates in autophagy, shut-
tling proteins for autophagic degradation [75]. Phosphorylation of the 
S351 in the p62 interacting motif by mTORC1 significantly (30-fold) 
improve affinity to the Keap1, but still several times weaker than Nrf2 

ETGE motif [76]. Besides Nrf2 displacement p62 binding triggers Keap1 
autophagic degradation, resulting in a more sustained Keap1 inactiva-
tion [77]. Table 1 listed several cellular proteins with a motif, resem-
bling ETGE, shown to compete for the Keap1. Unlike aforementioned 
examples, p21, cyclin dependent kinase inhibitor, binds to Nrf2, both 
DLG and ETGE motifs, through 154KRR156 sequence, but compete with 
the Keap1 only for a weaker DLG site [78]. p21 has many functions, 
including those involved in the cell cycle regulation, DNA repair, 
apoptosis [79,80]. DNA damage activates p21, which blocks cell cycle 
progression and simultaneously induces cellular protective response 
through the interplay with the Nrf2 pathway. 

The network of Nrf2-regulated genes consists of hundreds of genes 
[94,95], some modulated directly and others indirectly/secondarily 
through Nrf2-regulated TFs, such as Notch1, MafG, C/EBPβ, retinoid X 
receptor α, arylhydrocarbon receptor [95–99]. Also, regulation of such 
wide battery of genes partially could be realized through crosstalk with 
other signaling pathways such as Notch1 [99], heat shock proteins 
[100], Nf-kB [101,71], p53 [102], PI3K-AKT, and mTOR [15]. Genome 
scale analysis using chromatin immunoprecipitation with parallel 
sequencing revealed 645 and 654 genes, which are direct targets for 
basal Nrf2 activity and induced Nrf2 activation, correspondingly, 
wherein only 244 genes are intersected [98]. 

4. Clinical significance 

Most of the Nrf2 regulated genes are associated with cell defense 
pathways, such as protection against oxidative stress. Oxidative stress is 
a common feature of many diseases, such as neurodegenerative (Alz-
heimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral 
sclerosis (ALS), multiple sclerosis (MS), frontotemporal dementia, Frie-
drich ataxia, Huntigton disease [5,103]), cardiovascular [104,105], 
inflammation diseases (atherosclerosis [106], rheumatoid arthritis 

Table 1 
Cellular proteins, competing with Nrf2 for the Keap1.  

Protein Interacting motif Description 

p62 349DPSTGEL355 autophagy protein, shuttling target 
proteins, including Keap1, for degradation 
[76,77,81]. 

prothymosin 
α 

42EENGE46 anti-apoptotic protein, involved in cell 
proliferation [56,82]. 

DPP3 480ETGE483 zinc-dependent metallopeptidase that 
hydrolyses dipeptides at the N-terminal 
site and contributes to the protein turnover 
[83,84]. 

WTX 286SPETGE291 tumor suppressor mediates degradation of 
β-catenin, thereby downregulating WNT/ 
β-catenin signaling pathway [85]. 

PALB2 91ETGE94 a major BRCA2 binding partner, 
controlling its nuclear localization, DNA 
repair and checkpoint function [86]. 

iASPP 239DLT241 a binding partner and transactivity 
inhibitor of NF-kB and p53 [87]. 

CDK20 25ETGE28 а protein kinase, promoting cell 
proliferation and radiochemoresistance  
[88]. 

gankyrin 21ELKE24 and 
201ENKE204 

oncoprotein, facilitating degradation of 
p53 and Rb [89]. 

HBXIP 110GLNLG114 oncoprotein, transactivator of several 
oncogenes, regulator of cellular apoptosis 
and division [90]. 

MCM3 387ETGE390 a subunit of the replicative DNA helicase  
[91]. 

IKKβ 36ETGE39 part of the IKK complex, which activates 
NF-κB after pro-inflammatory stimuli  
[71]. 

FAM129B 708DLG710 and 
718ETGE721 

antioxidative protein [92] 

RMP 215EELERQE221 and 
246EEKE249 

oncogene whose product acts as an 
inhibitor of PP1γ (protein serine/threonine 
phosphatase gamma) [93]  
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[107], inflammatory bowel disease), airway diseases (asthma, chronic 
obstructive pulmonary disease (COPD) [108]) and a number of viral 
infections [109–111]. Since the excessive generation of ROS leads to the 
deregulation of the cellular redox balance during these pathologies, 
stimulation of the Nrf2 signaling could be beneficial offering a thera-
peutic strategy. Multiple lines of evidence from the literature support 
this approach potential for different indications. A meta-analysis of 9 PD 
and 7 AD microarray datasets revealed several dozen common down-
regulated ARE-contained genes [112]. Variations in the Nrf2 gene are 
associated with the alteration of PD risk and the age of its onset 
[113–115], affect AD progression [116], alter the risk of ALS [117] and 
ulcerative colitis [118]. Neuroprotective effect of Nrf2 activation has 
been shown in several studies with the mouse models of PD [119–122]. 
In AD neurons Nrf2 localizes predominantly in inactive cytoplasmic 
pool, in contrast to normal hippocampus neurons with mainly nuclear 
localization of Nrf2 [123]. Intracranial delivery of Nrf2-expressing 
lentivirus into hippocampus resulted in significant improvement of 
spatial learning in murine AD model, comparing with the control vector 
[124]. In other study inhibition of GSK3β, Nrf2 repressor, increased Nrf2 
nuclear level, its transcriptional activity, decreased oxidative stress with 
improved learning and memory [125]. During COPD, caused by air 
pollutants, including cigarette smoke, Nrf2 pathway activity is 
decreased and the disease severity is negatively correlated with the Nrf2 
expression [126,127]. Nrf2 activation increases pulmonary bacterial 
clearance by alveolar macrophages and improves protection against 
opportunistic bacterial infections [128]. Tecfidera (BG-12, dimethyl 
fumarate [129]) is FDA-approved first line treatment for relapsing MS 
with the mechanism, widely accepted, involving Nrf2 activation 
(possibly, through blocking its degradation [112]). Treatment with the 
Nrf2 activators also has been shown encouraging results in mouse model 
of ALS [130]. Additional information regarding the Nrf2 role in the 
neurodegenerative processes are given in recent reviews 
[103,131–135]. 

Oxidative stress contributes to the pathogenesis of wide range of 
viral diseases and expression of different Nrf2-regulated genes was 
shown to be altered during viral infections. The Nrf2 role in viral dis-
eases could be of opposite sign, depending on virus type, cell type or 
stage of infection: different viral proteins during replication promote 
oxidative stress, which should be controlled by the virus in order to 
secure optimal replication conditions [136–138]. As Nrf2 exerts multi-
ple effects, most of the studied viruses (for example, influenza virus) 
induce it to facilitate their replication through protection against virus- 
induced cytopathic effects by increasing antioxidant genes expression 
(for example, influenza virus (Fig. 3) [139]). For influenza virus it was 
observed on a single cell level that Nrf2-regulated genes expression was 
associated with a higher viral transcript expression [140]. Other 

example of Nrf2 activating virus is the Dengue virus, which activates 
Nrf2 via nuclear translocation and after endoplasmic reticular stress this 
signaling lead to the Nrf2-mediated TNF-α production which, in turn, 
contributes to the severity of illness in patients with DENV infection 
[141]. Recently, Ferrari et al. demonstrated that during first 24 h of the 
DENV infection Nrf2 is activated with increased expression of antioxi-
dant genes, restricted IFN type I response, decreased ROS production 
and inflammation [142], thereby limiting antiviral response. Later (24 
h–48 h after infection) viral protease NS2B3 cleaves Nrf2, resulting in 
ROS accumulation and increased inflammation, creating conditions fa-
voring viral replication [142]. The contrary the replication strategy of 
respiratory syncytial virus is to promote Nrf2 proteasomal degradation, 
thereby suppressing its antioxidant activity [143,144]. Nrf2-deficient 
mice had significantly higher RSV infection severity comparing with 
wild type mice and pretreatment with Nrf2 inductor limits virus repli-
cation and inflammation in mice with functional Nrf2 [145]. In a similar 
fashion Nrf2 activation inhibited replication and virus-induced cyto-
toxicity of several rotavirus strains [146]. Likewise, the Nrf2 agonists 
impaired herpes simplex virus 1 replication, whereas infected cells with 
high Nrf2 activity demonstrated lower level of the HSV-1 replication 
[147]. For some viral infections data are conflicting and mixed. Bender 
and Hildt in their recent review summarized reports about the Nrf2 role 
in viral hepatitis infections [148]. Authors surmised that the contra-
dictory results regarding HCV and Nrf2 could be explained by different 
cellular stress response induction in acute and chronic HCV viral models 
(high ROS production and depletion of GSH in acute phase and lower 
ROS level and increased GSH in chronic infection) [148]. A flood of 
paper over past year regarding SARS-CoV-2 infection demonstrates a 
major role of oxidative stress and excessive inflammation response in 
COVID-19 pathogenesis [149,111,150]. Besides oxidative stress Nrf2 
also modulates inflammation through downregulating proinflammatory 
cytokines IL-6 and IL-1β expression, suppressing type I IFN response and 
acting as an antagonist of NF-kB signaling [151–153]. It is noteworthy 
that, Il-6 blockade has been considered as a treatment against COVID-19 
and in some conditions Il-6 antagonists deployment may be beneficial 
[154]. Olagnier et al. have demonstrated that NRF2 pathway is sup-
pressed in lung biopsies obtained from COVID-19 patients, whereas Nrf2 
activators such as 4-octyl-itaconate and dimethyl fumarate trigger 
cellular antiviral response, resulting in SARS-CoV-2 replication inhibi-
tion [155]. Moreover, Nrf2 activity suppression was shown to upregu-
lated ACE2, SARS-CoV-2 receptor, while Nrf2 activation reduce ACE2 
level [156], which could led to a lower virus internalization (Fig. 3). 
Moreover, ACE2 is an enzyme, which cleaves angiotensin II (Ang II), a 
vasoconstrictor, to angiotensin 1–7, a vasodilator. Ang II produces ROS 
by stimulating membrane-bound NADPH oxidase [157,158]. The 
degradation of Ang II by ACE2 reduces oxidative stress as it inhibits 
NADPH oxidase, and therefore, Ang II-induced ROS production. If ACE2 
is bound to the S protein, the level of Ang II will increase, leading to an 
increased presence of superoxide species and subsequent cell damage, 
inevitably creating a cycle of oxidative stress, and ultimately, increasing 
the risk of severe course of COVID-19 [150]. These findings are 
consistent with previous report, describing antiviral activity of heme 
oxygenase 1, a well-known target of the Nrf2 induction, against a panel 
of viruses including HIV, HCV, HBV, influenza virus, Ebola virus and 
others [159]. At the same time, the activation of NRF2 pathway by ROS 
is nonlinear. Low doses of an oxidizing agent such as ozone can have a 
therapeutic effect through the activation of NRF2 in viral diseases. In 
particular, ozone therapy is considered as a promising method of 
treatment for COVID-19 [160]. These efforts, investigating Nrf2 role, set 
the foundation for further studies that can establish the effects of Nrf2 
pathway modulation in different viral diseases. 

The dark side of the Nrf2, the other facet of this system, is its role in 
cancer promotion, where Nrf2 is usually up-regulated, providing to the 
malignant cells survival and growth benefits [161,162,32,45]. Whereas 
short-term Nrf2 activation counteracts oxidative stress, which could 
lead to clinical benefits and even suppress (trough ROS and chemical 

Fig. 3. Nrf2 and its role in influenza and SARS-CoV-2 infections. 
This figure was created using images from Servier Medical Art by Servier under 
a Creative Commons Attribution 3.0 Unported License. 
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carcinogens neutralization) cancer initiation, especially in its earliest 
stages, long-term activation could promote the development of carci-
nogenesis and help cancer cells to evade chemo- and radiotherapy 
[163–165]. The constitutive Nrf2 pathway activation is a feature of 
different cancers and often is associated with the poor prognosis. The 
meta-analysis of the Nrf2 prognostic value in solid tumor patients 
showed that the high Nrf2 expression level had negative impact on 
survival [166]. The Nrf2 up-regulation could be realized through on-
cogenes (KRAS, BRAF, MYC [167]), via mutations in Nrf2 Neh2 domain 
[168] or via Keap1 [169,170], including epigenetic Keap1 silencing 
[171], Keap1 inactivation through oncometabolites [172], stress, and 
hormone signaling, accumulation of Keap1:Nrf2 disrupting cellular 
proteins [32]. The dual role of Nrf2 in cancer suggests that for therapy 
activation or inhibition strategy for Nrf2 should be chosen depending on 
the context [161]. For malignancies inhibition of the Nrf2 pathway 
could be beneficial. On the other hand, taking into account that the Nrf2 
activity in many degenerative processes usually plays a protective role, 
it seems straightforward to augment it through additional activators. 

5. Electrophilic Nrf2 inducers 

To date, two main approaches have been developed for Nrf2 
pathway activation: electrophilic activators and inhibitors of Nrf2: 
Keap1 interactions. Several electrophilic activators are in advanced 
clinical stages with one molecule (Tecfidera) approved by FDA [173]. 
The mechanism of their action is to imitate the natural stress-induced 
Nrf2 activation through forming covalent adducts with the sulfhydryl 
groups of the Keap1 cysteines [174]. Magesh et al. have reviewed a 
dozen of chemical agents classes, inducing Nrf2 activity: Michael ac-
ceptors (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid, CDDO, 
and dimethyl fumarate), oxidizable diphenols and quinones (tert- 
butylhydroquinone, tBHQ), isothiocyanates and sulfoxythiocarbamates 
(sulphoraphane), dithiolethiones and diallyl sulfides (oltipraz), vicinal 
dimercaptans (lipoic acid), trivalent arsenicals, selenium-based com-
pounds, polyenes (lycopene), hydroperoxides (tert-butylhydroper-
oxide), heavy metals and metal complexes [175]. Reactivity of the 
Keap1 different cysteines toward different inducers varies [176] with 
some residues (Cys151, Cys273, Cys288) have been shown to be critical 
for Keap1 function [47,174]. The apparent mechanism of stress-induced 
Nrf2 induction is the Keap1 conformation changes, followed with the 
Nrf2 release from the complex with it [51,50]. The most studied Nrf2- 
induced compounds are dimethyl fumarate (Tecfidera), sulforaphane, 
naturally occurring isothiocyanate isolated from cruciferous vegetables, 
such as broccoli and cauliflower, and CDDO-Me, also originated from 
the natural product, isolated from pharmaceutically active plants [177]. 
The Nrf2-inducing activity of all three agents is highly dependent on the 
Keap1 Cys151 modification. Despite the exact mechanism of the 
dimethyl fumarate remains unknown, its Nrf2-inducing activity has 
been demonstrated in vitro [178] as well as in vivo [179]. Structural 
studies of the CDDO-Me revealed formation of the adduct with the 
Keap1 Cys151, inhibiting binding to the Cul3. Blocking the Keap1:Cul3 
interactions has been proposed also as a possible sulforaphane-mediated 
mechanism. The importance of Nrf2 pathway activation as an anti-viral 
approach has been reinforced by several electrophilic compounds. Thus, 
dimethyl fumarate and sulforaphane have been shown to inhibit HIV 
replication in macrophages [180,181]. Besides HIV, sulforaphane- 
mediated antiviral activity has been demonstrated against influenza 
virus [182], respiratory syncytial virus [145], hepatitis C virus [183], 
and herpes virus [184,147]. 

The Achilles heel of electrophilic agents is their non-discriminative 
concentration-dependent [161] reactivity toward a variety of cellular 
nucleophilic molecules, laying the foundation for off-target effects. 
Some Nrf2-inducing electrophilic molecules have been shown to react 
with other cellular targets [185,186], raising questions about the 
selectivity of such agents to Nrf2 signaling, complicated mechanism of 
their action and possible influence on other pathways. Even dimethyl 

fumarate and sulforaphane, two of the most popular Nrf2 inductors, 
have possible NRf2-independent effects [187–190]. Furthermore 
dimethyl fumarate demonstrated equal therapeutic effects on multiple 
sclerosis murine model in Nrf2− /− and WT mice, raising concerns about 
mechanism of its action [188]. For these reasons it is recommended to 
minimize unspecific reactive molecules in drug development process, 
despite there is not a clear link between toxicity and drug-protein ad-
ducts formation [188]. Also, similarity of Nrf2 inducers with pan assay 
interference compounds (PAINS, molecules, showing false bioactivity in 
many assays [191]) was noticed by several authors [192,193,194]. For 
instance, one of the most insidious PAINS, curcumin [191], is often 
recognized as a potent Nrf2 activator [195,196]. Besides specificity 
issue, efficiency of such electrophilic induction is challenged due to the 
unfavorable cytoplasmic milieu. Thus, enzymes of cellular xenobiotic 
metabolism system conjugate reactive electrophilic molecules with 
abundant polar compounds with subsequent excretion out of cells 
[197,198,199]. Thereby being able to affect whole thiol proteome, 
provoking Nrf2-independent effects, electrophilic inducers have narrow 
therapeutic window. 

For this reason researchers are making progress toward more specific 
Nrf2 inducers with decreased toxicity, through development of new 
possible Nrf2 activators or chemically “tuning” previously studied in-
ducers [200]. Thus, Copple et al. compared the Nrf2 activating potency 
of sulforaphane, DMF, and some structurally related molecules [201]. 
Using cell line with stable expression of luciferase ARE reporter they 
found that for several electrophilic inducers increase in Nrf2 activating 
ability is associated with much smaller increase in toxicity and better in 
vitro therapeutic index than for well-known clinically studied Nrf2 in-
ducers. Other recent work also demonstrated that medicinal chemistry 
offer an opportunity to modify previously described Nrf2 activators to 
less cytotoxic molecules with preserving Nrf2 activating activity [202]. 
Authors from another study pointed toward pro-electrophilic Nrf2 in-
ducers, which become activated only by strong oxidation in injured cells 
[203]. Such mechanism accounts for preserving GSH level in uninjured 
cells, whereas electrophile inducers, for instance DMF, deplete GSH in a 
concentration-dependent manner through non-specific reaction with its 
thiol group, restraining normal cellular protection ability [204]. More 
specific derivatives such as monoethyl fumarate (MEF), reactive only to 
the sole Cys151 on KEAP1 instead of DMF could be more safe Nrf2 ac-
tivators [204]. 

Another way for Nrf2 activation is concurrent inhibition of its 
interaction with Keap1. It is important to note that such an approach 
enables more specific regulatory impact. Furthermore, taking into ac-
count the side effects of the constant activation of Nrf2 and a long time 
during which the pathogenesis of neurodegenerative diseases takes 
place [205], creation of drugs for cell- or tissue-specific activation of this 
pathway is of high interest. 

6. Direct inhibitors of Nrf2:Keap1 interactions 

Alternative widely used approach for Nrf2 signaling activation is 
non-electrophilic activators of the Nrf2 system, based on direct inter-
ruption of Nrf2:Keap1 interactions. The Nrf2:Keap1 PPI are well 
described for the complexes Keap1 Kelch domain with the ETGE and 
DLG motifs from the Nrf2. The Keap1 Kelch domain constitutes a six- 
bladed β-propeller structure, while the Neh2 domain is intrinsically 
disordered [206]. Protein data bank (PDB) discloses several dozen of the 
Keap1 structures, in bound and unbound states [207,22,169,208]. For 
the ETGE and DLG motifs the interface surfaces are approximately 529 
Å2 and 820 Å2 [209] correspondingly. The relatively small interacting 
areas make possible the development of direct inhibitors or the Nrf2: 
Keap1 PPI, both peptides and small molecules. 

A number of peptide ligands were screened, capable to displace the 
endogenous Nrf2 from the complex with the Keap1. The minimal length 
of the ETGE motif peptides was estimated by several groups by trun-
cating the Nrf2 Neh2 domain. Hu's group investigated by surface 

A.V. Ulasov et al.                                                                                                                                                                                                                               



Life Sciences 291 (2022) 120111

6

plasmon resonance method a dozen of ETGE peptides from 7mer to 
16mer [210]. 7mer (H-EETGEFL-OH) and 8mer (H-DEETGEFL-OH) 
peptides had affinity to Keap1 much greater than 1 μM. The 9mer 
peptide Nrf2 (H-LDEETGEFL-OH) was more active with a Kd of 352 nM. 
One order increase in potency was demonstrated with 10mer peptide (H- 
QLDEETGEFL-OH), whereas further consistent elongation of Nrf2 pep-
tides till 16mer didn't improve affinity. Fluorescence polarization (FP) 
assay confirmed the similar ranking of the same peptides with a signif-
icant jump in activity for the peptides greater than 10mer [211], while 
16mer Nrf2 peptide was significantly better than shorter variants. Well's 
group with the aid of FP assay also investigated a series of the DLG and 
ETGE peptides [212,213]. Peptides of various lengths were examined 
and the Kd of 7mer, 9mer and 10mer Nrf2 peptides were 96 nM, 54 nM 
and 51 nM, correspondingly [212]. In a further study authors increased 
lipophilicity of several 7mer Nrf2 peptides through including stearoyl 
group to the N-terminus [213]. Such modification significantly 
increased affinity with the most potent molecule (St-DPETGEL-OH) was 
almost 4 times more effective, than Neh2 domain of the Nrf2 [213]. 

Other non-proteinogenic chemical peptide modifications such as N- 
terminal acetylation improve binding of some peptide variants to the 
Keap1, possibly through decreasing unfavoured electric charges of N- 
terminal free amino group [210]. Insertion of terminal cysteine residues 
for further head-to-tail cyclization strengthened binding to the Keap1 
[214]. The tighter variant (Ac-c[CLDPETGEYLC]-OH) demonstrated 2.8 
nM affinity to Keap1 and 9.4 nM IC50 in FP activity assay. Recent paper 
from the same laboratory evaluated potential of the strong linear Keap1 
binder (Ac-LDPETGEYL-OH, Kd = 42 nM [214]) as moiety to recruit 
Keap1 in vivo in order to downregulate cellular target protein, Tau 
[215]. The artificial peptide consisted of three functional parts: Keap1 
and Tau recognizing modules as well as cell penetration sequence. The 
results confirmed the viability of such approach for the Keap1-mediated 
and proteasome-dependent intracellular target degradation. Represen-
tative Nrf2:Keap1 peptide inhibitors with evaluated Kd less than 100 nM 
are listed in the Table 2. 

The intensive search for potential peptide inhibitors of NRF2-Keap1 
interaction inhibitors continues [218,219]. Many linear and cyclic 
peptides show promising results in vitro. However, neither cyclization 
nor conjugation with cell penetrating peptides (CPP) could generate 
cell-active peptides in many cases [218]. Thus, the development of 
methods for the effective intracellular delivery of antibodies, their 
fragments, or antibody-like molecules is extremely important. Various 
strategies for intracellular targeting of antibodies via protein- 
transduction domains or their mimics, liposomes, polymer vesicles, 
and viral envelopes are now under the scrutiny of developers [220]. 

An appealing strategy for design the Keap1 binders with better than 
wild type Nrf2 affinity is the use of antibody-like alternative protein 
scaffold. To date, the sole example of this strategy is the article, pub-
lished by Guntas et al., who engineered artificial protein with a sub-
nanomolar affinity to the Keap1 Kelch-domain [216]. As a scaffold 
authors used monobody, 10th type lll domain of human fibronectin, 
which forms three unstructured flexible loops, similar to 

complementarity-determining regions of the traditional antibodies, and 
is well tolerated to the mutagenesis [221,222,223]. The best binder 
clone R1 had the RDEETGEFHWP in one of the loops and demonstrated 
affinity toward the Keap1 15-time tighter (Kd = 300 pM) than full-size 
Nrf2. Meanwhile, despite reported superb affinity, cellular effects after 
monobody R1 gene transfection were quite moderate [216]. 

Despite promising in vitro activity in a low nanomolar concentra-
tions cellular effect of NRF-derived peptides were exhibited in a 
micromolar range, implying quite poor cell entry [213]. Peptide- 
inhibitors ineffective access to the cytoplasmic Keap1 necessitated ef-
forts for delivery approaches development. The most popular strategy 
for peptides delivery is the use of CPP, cell penetrating peptides 
[224,225]. Steel et al. [226] generated a series of Nrf2-peptides (10mer, 
14mer and 16mer), fused to the TAT-peptide, derived from the HIV-1 
Trans-Activator of Transcription protein. The most potent inducer of 
HO-1 expression (Nrf2 activation target) was Nrf2 14mer peptide 
(LQLDEETGEFLPIQ), conjugated with TAT. HO-1 expression was up- 
regulated in a time- and dose-dependent manner and reached 
maximum after 6 h and 12 h, measured as mRNA and protein, respec-
tively [226]. Similar approach was described in Zhao et al. article, who 
also synthesized TAT-Nrf2 peptide [227]. Unlike to previous studies, 
they used shorter Nrf2-peptide (DEETGE) and designed it for Nrf2 
activation in injured brain. Intracerebroventricular infusion of TAT- 
DEETGE into mouse with model traumatic brain injury had no posi-
tive effects on Nrf2 regulation [227]. Modified peptide with calpain 
cleavage site between TAT and DEETGE (TAT-CAL-DEETGE) increased 
expression of Nrf2-target genes in brain of injured mice, comparing with 
healthy controls [227]. In a further study TAT-CAL-DEETGE peptide was 
tested as a potential neuroprotectant against global cerebral ischemia 
[228]. On a cellular level it decreased Keap1:Nrf2 interactions in the 
cytoplasm and enhanced nuclear Nrf2 translocation. Both intra-
cerebroventricular pretreatment as well as peripheral post-treatment 
administration of this peptide exerted neuroprotection and preserved 
cognitive functions in rats after ischemia inducement [228]. 

Small molecules approach is an alternative to peptide-inhibitors due 
to the better stability and oral bioavailability. Different screening 
techniques have identified dozen of small molecules inhibitors of Nrf2: 
Keap1 interactions with several compounds exerted activity in a nano-
molar range [209,229,230]. Mimicking the natural Nrf2:Keap1 in-
teractions Jiang et al. [231] have discovered a compound with high 
affinity to the Keap1 (Kd – 3.6 nM) and 28.6 nM IC50 in the FP assay. This 
compound demonstrated dose-dependent cellular activity in Nrf2 in-
duction and increased expression of Nrf2-regulated genes. Further 
modification of this molecule enhanced two-fold cellular activity (IC50 
was determined to be 14.4 nM [232]), induced Nrf2 downstream genes 
and exhibited anti-inflammatory effects in mice. Davies et al. [233] 
developed other potential small molecule inhibitor with high affinity to 
the Keap1 (Kd = 1.3 nM) and demonstrated its ability to activate Nrf2 in 
both cell-based assay as well as in vivo in rat respiratory disease model. 

These results demonstrated the potential of small molecules and 
Nrf2-derived peptides to inhibit Nrf2:Keap1 interactions and thereby to 
activate Nrf2/ARE pathway. Measured in vitro high affinity of such in-
hibitors could be translated in a clinical relevant activity in case of 
taking into account huge intracellular Keap1 concentration and delivery 
issues. 

7. Room for competitive Nrf2 regulation by drugs 

Modulation of PPI depends on relative quantities and interaction 
strength of interacting proteins (including intracellular endogenous 
competitors), which determines the inhibitor amount inside cells for 
effective inhibition. 

Thereby efficient PPI inhibitors delivery inside cells is the critical 
issue. For small molecules it's relatively straightforward to alter their 
structure for transmembrane diffusion, however it could decrease af-
finity to the target [234]. Peptides delivery to the cytosol or nucleus 

Table 2 
Some promising Nrf2:Keap1 peptide inhibitors.  

Compound Affinity to the Keap1 Link 

H-QLDEETGEFL-OH 27 nM [210] 
FITC-AFFAQLQLDEETGEFL-OH 29 nM [211] 
FITC-β-DEETGEF-OH 96 nM [212] 
FITC-β-LDEETGEFL-OH 54 nM [212] 
FAM-LDEETGEFLP-OH 51 nM [212] 
St-DPETGEL-OH 22 nM [213] 
Ac-c[CLDPETGEYLC]-OH 3 nM [214] 
Ac-LDPETGEYL-OH 42 nM [214] 
monobody R1 300 pM [216] 
GQLDPETGEFL 87 nM [217] 
c[GQLDPETGEFL] 18 nM [217]  
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requires use of the vectors, the most popular of which is CPPs, a group of 
short peptides with high proportion of basic amino acids [235–237]. 
CPP translocation to the cytoplasm occurs in a receptor-independent 
pathway, mechanism of which is still questionable [238,239]. CPP 
delivered various cargos inside cells [237,236], but typically required 
high concentration for their activity [226,240], therefore without an 
active transport the intracellular concentration of delivered cargos is 
less than their environment. Also, the penetration inherent non- 
specificity greatly hampers in vivo use of CPP technology, restricting 
it mostly to the in vitro/ex vivo applications. Thus, there is a desperate 
need for the development of technologies, able [241] to deliver Nrf2- 
derived peptides for Nrf2:Keap1 interactions efficient inhibition in 
target cells. 

Nrf2, one of the stimuli-sensitive TFs, sits at the hub of the complex 
network, regulating cell defense pathways, including antioxidant pro-
tection. The involvement of oxidative stress in pathogenesis of numerous 
pathologies presents short-term Nrf2 activation in target cells as a viable 
cytoprotective therapeutic strategy for the treatment of some neurode-
generative, cardiovascular, inflammation diseases and possibly some 
viral diseases [242,243]. Several small molecules Nrf2 inducers are in 
clinical trials with one compound approved as a first-line oral therapy 
for MS. To circumvent the drawbacks of unspecific cysteine-modifying 
Nrf2 activators direct Nrf2:Keap1 PPI inhibitors have been developed. 
However, up to 1 μmol the Keap1 cytoplasmic concentration [52] set a 
high bar for this approach, stimulating search for threshold estimation of 
minimal concentration of disrupting compound, capable to outcompete 
endogenous Nrf2 for binding to the Keap1. The rise of antibody-like 
scaffolds provides tremendous opportunities for the development of 
small high-affinity PPI inhibitors for virtually any intracellular protein 
[244]. The concern of high intracellular concentration of targets like 
Keap1 could be alleviated by the deployment of targeted protein 
degradation technologies [245], which are shown to achieve sub-
stoichiometric target inhibition [246,247]. A significant challenge is the 
creation of multi-functional systems that can provide specific in vivo 
delivery of effective Nrf2 activators into cells that require the protection 
minimally affecting other organs and tissues. A possible solution to this 
problem could be new drugs based on the development of polypeptide 
modular nanotransporters [248] or multifunctional nanoparticles [249]. 
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